بهینه‌سازی گروه مورچه‌ها یا ACO یک الگوریتم مناسب یافتن راه‌حل‌های تقریبی برای مسائل بهینه‌سازی ترکیبیاتی است. در این روش، مورچه‌های مصنوعی به‌وسیله‌ٔ حرکت بر روی نمودار مساله و با باقی گذاشتن نشانه‌هایی بر روی نمودار، همچون مورچه‌های واقعی که در مسیر حرکت خود نشانه‌های باقی می‌گذارند، باعث می‌شوند که مورچه‌های مصنوعی بعدی بتوانند راه‌حل‌های بهتری را برای مساله فراهم نمایند. همچنین در این روش می‌توان توسط مسائل محاسباتی-عددی بر مبنای علم احتمالات بهترین مسیر را در یک نمودار یافت.


این روش که از رفتار مورچه‌ها در یافتن مسیر بین محل لانه و غذا الهام گرفته شده؛ اولین بار در 1992 توسط مارکو دوریگو (Marco Dorigo) در پایان نامهٔ دکترایش مطرح شد.

مقدمه 

در دنیای واقعی مورچه‌ها ابتدا به طور تصادفی به این سو و آن سو می‌روند تا غذا بیابند. سپس به لانه بر می‌گردند و ردّی از فرومون (Pheromone) به جا می گذارند. چنین ردهایی پس از باران به رنگ سفید در می‌آیند و قابل رویت اند. مورچه‌های دیگر وقتی این مسیر را می‌یابند، گاه پرسه زدن را رها کرده و آن را دنبال می‌کنند. سپس اگر به غذا برسند به خانه بر می‌گردند و رد دیگری از خود در کنار رد قبل می گذارند؛ و به عبارتی مسیر قبل را تقویت می‌کنند. فرومون به مرور تبخیر می‌شود که از سه جهت مفید است:

باعث می‌شود مسیر جذابیت کمتری برای مورچه‌های بعدی داشته باشد. از آنجا که یک مورچه در زمان دراز راه‌های کوتاه‌تر را بیش تر می‌پیماید و تقویت می‌کند هر راهی بین خانه و غذا که کوتاه‌تر(بهتر) باشد بیشتر تقویت می‌شود و آنکه دورتر است کمتر.
اگر فرومون اصلاً تبخیر نمی‌شد، مسیرهایی که چند بار طی می‌شدند، چنان بیش از حد جذّاب می‌شدند که جستجوی تصادفی برای غذا را بسیار محدود می‌کردند.
وقتی غذای انتهای یک مسیر جذاب تمام می‌شد رد باقی می ماند.


لذا وقتی یک مورچه مسیر کوتاهی (خوبی) را از خانه تا غذا بیابد بقیهٔ مورچه‌ها به احتمال زیادی همان مسیر را دنبال می‌کنند و با تقویت مداوم آن مسیر و تبخیر ردهای دیگر، به مرور همهٔ مورچه‌ها هم مسیر می‌شوند. هدف الگوریتم مورچه‌ها تقلید این رفتار توسط مورچه‌هایی مصنوعی ست که روی نمودار در حال حرکت اند. مساله یافتن کوتاه‌ترین مسیر است و حلالش این مورچه‌های مصنوعی اند.



از کابردهای این الگوریتم، رسیدن به راه حل تقریباً بهینه در مسئله فروشنده دوره‌گرد است. به طوری که انواع الگوریتم مورچه‌ها برای حل این مساله تهیه شده. زیرا این روش عددی نسبت به روشهای تحلیلی و genetic در مواردی که نمودار مدام با زمان تغییر کند یک مزیت دارد؛ و آن این که الگوریتمی ست با قابلیت تکرار. و لذا با گذر زمان می‌تواند جواب را به طور زنده تغییر دهد. که این خاصیت در روتینگ شبکه‌های کامپیوتری و سامانه حمل و نقل شهری مهم است.

مساله فروشنده دوره گرد
الگوریتم 
پروسهٔ پیدا کردن کوتاه‌ترین مسیر توسط مورچه ها، ویژگی‌های بسیار جالبی دارد، اول از همه قابلیت تعمیم زیاد و خود- سازمانده بودن آن است. در ضمن هیچ مکانیزم کنترل مرکزی ای وجود ندارد. ویژگی دوم قدرت زیاد آن است. سیستم شامل تعداد زیادی از عواملی است که به تنهایی بی اهمیت هستند بنابراین حتی تلفات یک عامل مهم، تاثیر زیادی روی کارآیی سیستم ندارد. سومین ویژگی این است که، پروسه یک فرآیند تطبیقی است. از آنجا که رفتار هیچ کدام از مورچه‌ها معین نیست و تعدادی از مورچه‌ها همچنان مسیر طولانی تر را انتخاب میکنند، سیستم می تواند خود را با تغییرات محیط منطبق کند و ویژگی آخر اینکه این پروسه قابل توسعه است و می تواند به اندازهٔ دلخواه بزرگ شود. همین ویژگی‌ها الهام بخش طراحی الگوریتم هایی شده اند که در مسائلی که نیازمند این ویژگی‌ها هستند کاربرد دارند.اولین الگوریتمی که بر این اساس معرفی شد، الگوریتم ABC بود. چند نمونه دیگر از این الگوریتم‌ها عبارتند از: AntNet،ARA،PERA،AntHocNet

نوشته شده در تاریخ پنجشنبه 8 اردیبهشت 1390    | توسط: محاسبات نرم    | طبقه بندی: الگوریتم مورچگان،     | نظرات()